Independently Extensible
Component Frameworks

Wolfgang Weck

Institute of Scientific Computing, ETH Ziirich, Weck@inf.ethz.ch

1 Introduction

The terms component and component framework are currently used differently,
depending on context and products. Different understandings can be found for
instance with Delphi, OpenDoc [5], and Oberon/F [6].

We believe, that the purpose of software components is to create a compo-
nent market. The basic technology for this are independently extensible soft-
ware systems. Independently extensible software in turn requires standards and
guidelines for the extension creators. These guidelines depend on the applica-
tion domain. We suggest to see component frameworks as software that enables
and enforces obedience to such guidelines.

In this paper we review the requirements of a component market and show
the role of component frameworks within it. We suggest definitions of the
terms component framework, dimensions of extension, parallel extensions, and
orthogonal extensions.

2 A Component Market Needs
Independently Extensible Systems

An extensible system allows to add functionality at run time. Only the function-
ality currently used is loaded into the computer and may consume resources.
Further functionality can be added when needed. The software to be added can
even be retrieved via the network.

A system 1is called independently extensible if extensions can be developed
by different people in complete ignorance of each other. Still, extensions are
expected to cooperate where appropriate; at least, they must not to interfere
with each other [7].

Independently extensible systems can change the way software is marketed.
Instead of monoliths, designed to fit all, small software components can be of-



fered. The customers select the functionality they want, buy the appropriate
components, and compose their system from them. We call this market a it
component market. In the future, such software components may even be billed
per usage [2].

A component market would be much more lively than the current software
market. The possibility to sell specialized software gives smaller manufacturers a
chance. It is no more necessary to deliver a complete application package, which
requires huge development resources. Instead, small ventures can specialize on
high quality add-ons to existing software [1]. This will increase competition
between vendors and finally generate the pressure for quality, which our current
software market lacks.

Independent extensibility of software systems is a requirement of a compo-
nent market. Only if components from different suppliers can be composed, the
customer has a true choice.

3 Component Individualism

To assert correctness of an independently extensible system is a considerable
problem. The main reason is that no static checks (like assertion of invariants or
type assertions) can be performed on the complete system, since the system will
never be complete. Static checks can only be done within individual components
or based on component specifications and interfaces. All other checking must
be deferred until run-time, leading to late detection of errors [7].

Further, independently extensible systems use a kind of composition that 1s
different to reuse and specialization of objects and libraries. Extensions of inde-
pendently extensible systems are developed individually and will be combined
later with other components developed in parallel. The different developers do
not know of each other. This is typical for independently extensible systems.

As a consequence, designers of components need to follow strict rules. Obe-
dience to these rules is essential to guarantee the composed system’s correctness.
This shall be illustrated by an analogy: we will look at humans as independent
individuals within a large population.

A human population consists of many individuals. None of the individuals
knows all the others but still may be required to interact with any of them. In
such cases, humans will judge the individual situation, negotiate, and compro-
mise. This is not always possible, however: either because communication is
restricted, or because there is not sufficient time for negotiation, or because the
individuals are not willing to agree. In these cases some arbitration is needed.

Such arbitration 1s made effective and just by using predefined rules or laws.
Since these laws are known in advance, the result of an arbitration process can
often be foreseen and is reproducable. Therefore, most of the time individuals
will compromise directly, saving the time for arbitration.

Maliciously behaving humans are locked up in a closed cell. Within that



space they have all freedom, but it is hard for them to communicate with the
outside or with the individual in the neighbouring cell. Isolating every individ-
ual 1s very safe, but 1t hinders cooperative work. For productive and effective
cooperation, individuals need some freedom and possibilities for interaction.
However, the freedom of one individual must end where another individual 1s
impaired.

Of course, when going back to components of independently extensible sys-
tems, we discover that the analogy does not work in all aspects. Most impor-
tantly, software components are not able to negotiate their behaviour within the
composed system. ([3] discusses how components could be adapted late. Such
adaptations help to reuse components a programmer is aware of, which is not
the case with independent extensibility.)

Software must be designed more rigorously. Programmers cannot change
their product’s behaviour after delivery. They have to get it right from the very
beginning. When the user detects that a certain combination of components
does not work correctly, it is too late.

On the other hand, when components cannot be trusted to behave well
and to not affect other’s correctness, they must be kept isolated. This is done
by using separate address spaces for each component and strictly controlling
resources allocated to components. However, this restricts interaction severely.
Data to be exchanged, for instance, must be linearized for transmission and
replicated in the receiver’s memory.

We conclude that it is preferable if components behave well. Behaving well
means to obey certain existing rules. These rules need to rule out every be-
haviour, that could lead to a conflict, and they must define protocols (or con-
tracts) for interaction between components.

It 1s important to note that the rules are not a matter of distrust into the
programmer’s cooperation. In the contrary: the rules form the only guidelines a
cooperative component programmer will have. Only clearly specified rules give
the programmer freedom beyond entirely conservative programming. This free-
dom is founded on the limits imposed to other components, which will coexist
at run time. The component design rules are the allowances and the limits at
the same time.

4 Component Frameworks

The set of rules to be obeyed by components in a certain environment is what
we call a component framework.

Component frameworks differ from object-oriented frameworks. Object-
oriented programming uses the term framework for the implementation of a
design pattern. The latter is a solution recipe, applicable to a family of prob-
lems. The premanufactured solution is adopted to a particular problem by
specializing the framework. Emphasis is laid on the functionality offered for



reuse.

A component framework, in contrast, is an incarnation of abstractions which
define rules for extending components. These rules form a base on which mul-
tiple components can coexist in a single environment. Whereas object-oriented
frameworks materialize a functional design pattern, component frameworks ma-
terialize design rules for components. Actual software solutions are contributed
by the components. The framework itself does not necessarily need to imple-
ment any functionality. Still, it may manage shared resources and provide for
communication between extension components.

In theory, a comprehensive documentation of the rules to be obeyed by
component designers would be sufficient to form a component framework. Such
a framework does not provide any safety. It is of no help in asserting system
wide invariants.

A component framework’s designer should strive for abstractions that enforce
the necessary rules. The only tool available to implement these abstractions and
to protect them against violation is information hiding behind the framework’s
interface.

By specifying the abstractions to be used by future components, much of
the component’s design must be anticipated. Component framework design is
meta design. It presents a major challenge for today’s software engineering.

5 Dimensions Of Extension

The above implies that a component framework can only be extended in those
ways that have been planned for ahead, i.e. in certain dimensions. Also, the
decision to use a certain component framework requires to accept the design
rules and the abstractions defined by it. If such a framework contains the
abstraction of some data type, this abstraction has to be taken as it is. It
cannot be changed. In general, twisting existing software to become extensible
towards a particular, not foreseen task is comparable to code reuse as being
banned by [4].

It does not make sense to speak of extensibility as such. This situation is
similar to a program’s correctness. I makes no sense to state that a program is
correct as such. Correctness can only be stated with respect to a given speci-
fication, and extensibility can only be stated with respect to certain extension
dimensions.

Obviously, it cannot be the goal that every extension must be anticipated
in detail, before creating a component framework. The challenge is to classify
possible extensions. These classes we call dimensions of extension.

Consider compound documents as an example. A compound document
framework will allow for extensions in two dimensions: containers and document
parts. For each dimension the common aspects of all extensions are defined but
not the details.



Note, that a single component may extend a component framework in more
than one dimension simultaneously. Extensions of a compound document frame-
work can implement parts which can be containers themselves. Dimensions of
extensions were introduced to classify the extensions not to separate them com-
pletely. A reason for still using the term dimension can be found below.

6 Parallel And Orthogonal Extension

Two different types of independent extensibility can be distinguished. Exten-
sions of the first type are mutually equal components expected to exist in par-
allel. We suggest to call this type of extension parallel extension, and the re-
spective components parallel components (or parallel extensions ).

From the component framework’s point of view, parallel components are
treated equally. They have to follow a common set of rules. Separating the
individual components is the most important issue. Parallel extensions will
access the same resources and perform similar operations.

A typical example for parallel extension can be found in frameworks for
compound documents: document parts. Any number of document part compo-
nents can be loaded. They are parallel extensions to the system. One important
task of the compound document framework is to manage access to devices, like
screen and keyboard.

The second type of extensibility is used to separate concerns. Different
extensions will have different purposes. We suggest to address this kind of
extensions as orthogonal extensions.

One purpose of such separation of concerns is to allow for unrestricted (pair-
wise) combination of components from different dimensions, i.e., to establish
orthogonality. Often, of two orthogonal dimensions one will contain implemen-
tations of certain functionality, and the other will contain users of this function-
ality.

The main task of an orthogonal extensible component framework is to pro-
vide an interface for interaction of components from different dimensions. This
interface must allow for efficient and effective interaction of the different com-
ponents, but at the same time must also be general enough to not couple the
components too tightly.

Document containers and document parts are an example for orthogonal
extensions: any type of part can be put into any type of container.

The two types of extension can be combined. One framework can allow for
extensions in several orthogonal dimensions, while supporting parallel extensions
in some or all of these dimensions. On the other hand, a single component can
extend a framework in several dimensions at the same time.

Component frameworks will be designed differently, depending on whether
they support parallel or orthogonal extensions. For parallel extensions separa-
tion of the individual components is in the foreground. It has to be assured



that independent extensions will not interfere. For orthogonal extensions, on
the other hand, the definition of the interface used for communication between
extensions of the different dimensions is most important.

7 Component Frameworks Are Domain
Dependent And Nested

We have defined component frameworks as software, which implements the de-
sign rules for component designers. These rules depend on the domain of prob-
lems, for which the respective components shall implement solutions. Conse-
quently, there will not be just one component framework in a particular system,
but several.

Some component frameworks will rely on lower level abstractions, i.e. other
component frameworks. Component frameworks will be nested and thus form
hierarchies.

Usually, components that implement frameworks can be used by end users
only together with extension components. On the other hand, top level compo-
nents will not work without the underlying framework components they depend
on. Therefore, the end user may need to buy several components to extend
a system. It may be reasonable, to market such components as bundles. In
Oberon/F [6], for instance, such bundles are called subsystems .

A component software environment forms the lowest level of a nested frame-
work’s hierarchy. It implements the rules for sharing hardware like memory
and devices. Programming languages are important parts of this lowest level
component frameworks. Through type systems, for instance, they implement
essential rules, which protect the memory.

8 Conclusions

A system is called independently extensible if the user can compose it at run
time from independently developed software components. Components are the
units of extension. They are also units of encapsulation, thereby allowing for
static assertion of certain properties.

Extension components will be developed by different people, in complete
ignorance of each other. When the user composes these components, they must
work together, or at least they must not interfere with each other.Individual
components must be designed to allow for composition with other, unknown
components. The only way to achieve this is to set up design rules for component
developers in advance.

These design rules are specifications for future components. They will lead
to certain abstractions. It is the purpose of component frameworks to 1imple-
ment these abstractions and to enforce obedience to the specification, as far as



possible. This is particular important as far as global security is concerned. Like
object-oriented frameworks are implementations of design patterns, component
frameworks are implementations of the abstractions to be used by extending
components.

Component frameworks can only be extended in the directions that have
been anticipated and for which they have been prepared for. The design prin-
ciples of the framework are inherited by any extension programmer.

The set of rules to be found and imposed depends on the domain of problems
the components shall solve. Therefore, more than one component framework
will be present in a running system. The frameworks will partly be nested within
each other.

References

[1] R.Beech, The Business Case for Component Software, Apple Directions,
pp- 19-23, Febr. 1996.

[2] B.Cox, No Silver Bullet Reconsidered, American Programmer Magazine,

Nov 1995.

[3] Urs Holzle, Integrating Independently-Developed Components in Object-
Oriented Languages, Proceedings ECOOP’93, LNCS 707, Springer-Verlag,
Germany, July 1993.

[4] B. Magnusson, Code Reuse Considered Harmful, Guest Editorial, Journal
of Object-Oriented Programming, Vol. 4, No. 3, November 1991, p. 8, 1991.

[6] The OpenDoc White Paper, http://www.cilab.org/aboutod.html.

[6] The Oberon/F User’s Guide, http://www.oberon.ch/customers/omi,
Oberon microsystems, Inc., Basel, Switzerland, 1994.

[7] C.Szyperski, Independently Extensible Systems - Software Engineering Po-
tential and Challenges, Proceedings of the 19th Australasian Computer
Science Conference, Melbourne, Australia, January 31 - February 2, 1996.



