
Independently Extensible

Component Frameworks

Wolfgang Weck

Institute of Scienti�c Computing� ETH Z�urich� Weck�inf�ethz�ch

� Introduction

The terms component and component framework are currently used di�erently�
depending on context and products� Di�erent understandings can be found for
instance with Delphi� OpenDoc ���� and Oberon�F ����

We believe� that the purpose of software components is to create a compo�
nent market� The basic technology for this are independently extensible soft�
ware systems� Independently extensible software in turn requires standards and
guidelines for the extension creators� These guidelines depend on the applica	
tion domain� We suggest to see component frameworks as software that enables
and enforces obedience to such guidelines�

In this paper we review the requirements of a component market and show
the role of component frameworks within it� We suggest de
nitions of the
terms component framework� dimensions of extension� parallel extensions� and
orthogonal extensions�

� A Component Market Needs

Independently Extensible Systems

An extensible system allows to add functionality at run time� Only the function	
ality currently used is loaded into the computer and may consume resources�
Further functionality can be added when needed� The software to be added can
even be retrieved via the network�

A system is called independently extensible if extensions can be developed
by di�erent people in complete ignorance of each other� Still� extensions are
expected to cooperate where appropriate� at least� they must not to interfere
with each other ����

Independently extensible systems can change the way software is marketed�
Instead of monoliths� designed to 
t all� small software components can be of	





fered� The customers select the functionality they want� buy the appropriate
components� and compose their system from them� We call this market a it
component market� In the future� such software components may even be billed
per usage ����

A component market would be much more lively than the current software
market� The possibility to sell specialized software gives smaller manufacturers a
chance� It is no more necessary to deliver a complete application package� which
requires huge development resources� Instead� small ventures can specialize on
high quality add	ons to existing software ��� This will increase competition
between vendors and 
nally generate the pressure for quality� which our current
software market lacks�

Independent extensibility of software systems is a requirement of a compo	
nent market� Only if components from di�erent suppliers can be composed� the
customer has a true choice�

� Component Individualism

To assert correctness of an independently extensible system is a considerable
problem� The main reason is that no static checks �like assertion of invariants or
type assertions� can be performed on the complete system� since the system will
never be complete� Static checks can only be done within individual components
or based on component speci
cations and interfaces� All other checking must
be deferred until run	time� leading to late detection of errors ����

Further� independently extensible systems use a kind of composition that is
di�erent to reuse and specialization of objects and libraries� Extensions of inde	
pendently extensible systems are developed individually and will be combined
later with other components developed in parallel� The di�erent developers do
not know of each other� This is typical for independently extensible systems�

As a consequence� designers of components need to follow strict rules� Obe	
dience to these rules is essential to guarantee the composed system�s correctness�
This shall be illustrated by an analogy� we will look at humans as independent
individuals within a large population�

A human population consists of many individuals� None of the individuals
knows all the others but still may be required to interact with any of them� In
such cases� humans will judge the individual situation� negotiate� and compro	
mise� This is not always possible� however� either because communication is
restricted� or because there is not su�cient time for negotiation� or because the
individuals are not willing to agree� In these cases some arbitration is needed�

Such arbitration is made e�ective and just by using prede
ned rules or laws�
Since these laws are known in advance� the result of an arbitration process can
often be foreseen and is reproducable� Therefore� most of the time individuals
will compromise directly� saving the time for arbitration�

Maliciously behaving humans are locked up in a closed cell� Within that

�



space they have all freedom� but it is hard for them to communicate with the
outside or with the individual in the neighbouring cell� Isolating every individ	
ual is very safe� but it hinders cooperative work� For productive and e�ective
cooperation� individuals need some freedom and possibilities for interaction�
However� the freedom of one individual must end where another individual is
impaired�

Of course� when going back to components of independently extensible sys	
tems� we discover that the analogy does not work in all aspects� Most impor	
tantly� software components are not able to negotiate their behaviour within the
composed system� ���� discusses how components could be adapted late� Such
adaptations help to reuse components a programmer is aware of� which is not
the case with independent extensibility��

Software must be designed more rigorously� Programmers cannot change
their product�s behaviour after delivery� They have to get it right from the very
beginning� When the user detects that a certain combination of components
does not work correctly� it is too late�

On the other hand� when components cannot be trusted to behave well
and to not a�ect other�s correctness� they must be kept isolated� This is done
by using separate address spaces for each component and strictly controlling
resources allocated to components� However� this restricts interaction severely�
Data to be exchanged� for instance� must be linearized for transmission and
replicated in the receiver�s memory�

We conclude that it is preferable if components behave well� Behaving well
means to obey certain existing rules� These rules need to rule out every be	
haviour� that could lead to a con�ict� and they must de
ne protocols �or con	
tracts� for interaction between components�

It is important to note that the rules are not a matter of distrust into the
programmer�s cooperation� In the contrary� the rules form the only guidelines a
cooperative component programmer will have� Only clearly speci
ed rules give
the programmer freedom beyond entirely conservative programming� This free	
dom is founded on the limits imposed to other components� which will coexist
at run time� The component design rules are the allowances and the limits at
the same time�

� Component Frameworks

The set of rules to be obeyed by components in a certain environment is what
we call a component framework�

Component frameworks di�er from object	oriented frameworks� Object	
oriented programming uses the term framework for the implementation of a
design pattern� The latter is a solution recipe� applicable to a family of prob	
lems� The premanufactured solution is adopted to a particular problem by
specializing the framework� Emphasis is laid on the functionality o�ered for

�



reuse�
A component framework� in contrast� is an incarnation of abstractions which

de
ne rules for extending components� These rules form a base on which mul	
tiple components can coexist in a single environment� Whereas object	oriented
frameworks materialize a functional design pattern� component frameworks ma	
terialize design rules for components� Actual software solutions are contributed
by the components� The framework itself does not necessarily need to imple	
ment any functionality� Still� it may manage shared resources and provide for
communication between extension components�

In theory� a comprehensive documentation of the rules to be obeyed by
component designers would be su�cient to form a component framework� Such
a framework does not provide any safety� It is of no help in asserting system
wide invariants�

A component framework�s designer should strive for abstractions that enforce
the necessary rules� The only tool available to implement these abstractions and
to protect them against violation is information hiding behind the framework�s
interface�

By specifying the abstractions to be used by future components� much of
the component�s design must be anticipated� Component framework design is
meta design� It presents a major challenge for today�s software engineering�

� Dimensions Of Extension

The above implies that a component framework can only be extended in those
ways that have been planned for ahead� i�e� in certain dimensions� Also� the
decision to use a certain component framework requires to accept the design
rules and the abstractions de
ned by it� If such a framework contains the
abstraction of some data type� this abstraction has to be taken as it is� It
cannot be changed� In general� twisting existing software to become extensible
towards a particular� not foreseen task is comparable to code reuse as being
banned by ����

It does not make sense to speak of extensibility as such� This situation is
similar to a program�s correctness� I makes no sense to state that a program is
correct as such� Correctness can only be stated with respect to a given speci	

cation� and extensibility can only be stated with respect to certain extension
dimensions�

Obviously� it cannot be the goal that every extension must be anticipated
in detail� before creating a component framework� The challenge is to classify
possible extensions� These classes we call dimensions of extension�

Consider compound documents as an example� A compound document
framework will allow for extensions in two dimensions� containers and document
parts� For each dimension the common aspects of all extensions are de
ned but
not the details�

�



Note� that a single component may extend a component framework in more
than one dimension simultaneously� Extensions of a compound document frame	
work can implement parts which can be containers themselves� Dimensions of
extensions were introduced to classify the extensions not to separate them com	
pletely� A reason for still using the term dimension can be found below�

� Parallel And Orthogonal Extension

Two di�erent types of independent extensibility can be distinguished� Exten	
sions of the 
rst type are mutually equal components expected to exist in par	
allel� We suggest to call this type of extension parallel extension� and the re	
spective components parallel components �or parallel extensions ��

From the component framework�s point of view� parallel components are
treated equally� They have to follow a common set of rules� Separating the
individual components is the most important issue� Parallel extensions will
access the same resources and perform similar operations�

A typical example for parallel extension can be found in frameworks for
compound documents� document parts� Any number of document part compo	
nents can be loaded� They are parallel extensions to the system� One important
task of the compound document framework is to manage access to devices� like
screen and keyboard�

The second type of extensibility is used to separate concerns� Di�erent
extensions will have di�erent purposes� We suggest to address this kind of
extensions as orthogonal extensions�

One purpose of such separation of concerns is to allow for unrestricted �pair	
wise� combination of components from di�erent dimensions� i�e�� to establish
orthogonality� Often� of two orthogonal dimensions one will contain implemen	
tations of certain functionality� and the other will contain users of this function	
ality�

The main task of an orthogonal extensible component framework is to pro	
vide an interface for interaction of components from di�erent dimensions� This
interface must allow for e�cient and e�ective interaction of the di�erent com	
ponents� but at the same time must also be general enough to not couple the
components too tightly�

Document containers and document parts are an example for orthogonal
extensions� any type of part can be put into any type of container�

The two types of extension can be combined� One framework can allow for
extensions in several orthogonal dimensions� while supporting parallel extensions
in some or all of these dimensions� On the other hand� a single component can
extend a framework in several dimensions at the same time�

Component frameworks will be designed di�erently� depending on whether
they support parallel or orthogonal extensions� For parallel extensions separa	
tion of the individual components is in the foreground� It has to be assured

�



that independent extensions will not interfere� For orthogonal extensions� on
the other hand� the de
nition of the interface used for communication between
extensions of the di�erent dimensions is most important�

� Component Frameworks Are Domain

Dependent And Nested

We have de
ned component frameworks as software� which implements the de	
sign rules for component designers� These rules depend on the domain of prob	
lems� for which the respective components shall implement solutions� Conse	
quently� there will not be just one component framework in a particular system�
but several�

Some component frameworks will rely on lower level abstractions� i�e� other
component frameworks� Component frameworks will be nested and thus form
hierarchies�

Usually� components that implement frameworks can be used by end users
only together with extension components� On the other hand� top level compo	
nents will not work without the underlying framework components they depend
on� Therefore� the end user may need to buy several components to extend
a system� It may be reasonable� to market such components as bundles� In
Oberon�F ���� for instance� such bundles are called subsystems �

A component software environment forms the lowest level of a nested frame	
work�s hierarchy� It implements the rules for sharing hardware like memory
and devices� Programming languages are important parts of this lowest level
component frameworks� Through type systems� for instance� they implement
essential rules� which protect the memory�

� Conclusions

A system is called independently extensible if the user can compose it at run
time from independently developed software components� Components are the
units of extension� They are also units of encapsulation� thereby allowing for
static assertion of certain properties�

Extension components will be developed by di�erent people� in complete
ignorance of each other� When the user composes these components� they must
work together� or at least they must not interfere with each other�Individual
components must be designed to allow for composition with other� unknown
components� The only way to achieve this is to set up design rules for component
developers in advance�

These design rules are speci
cations for future components� They will lead
to certain abstractions� It is the purpose of component frameworks to imple	
ment these abstractions and to enforce obedience to the speci
cation� as far as

�



possible� This is particular important as far as global security is concerned� Like
object	oriented frameworks are implementations of design patterns� component
frameworks are implementations of the abstractions to be used by extending
components�

Component frameworks can only be extended in the directions that have
been anticipated and for which they have been prepared for� The design prin	
ciples of the framework are inherited by any extension programmer�

The set of rules to be found and imposed depends on the domain of problems
the components shall solve� Therefore� more than one component framework
will be present in a running system� The frameworks will partly be nested within
each other�

References

�� R�Beech� The Business Case for Component Software� Apple Directions�
pp� �	��� Febr� ����

��� B�Cox� No Silver Bullet Reconsidered � American Programmer Magazine�
Nov ����

��� Urs H�olzle� Integrating Independently�Developed Components in Object�
Oriented Languages� Proceedings ECOOP���� LNCS ���� Springer	Verlag�
Germany� July ����

��� B� Magnusson� Code Reuse Considered Harmful � Guest Editorial� Journal
of Object	Oriented Programming� Vol� �� No� �� November ��� p� �� ���

��� The OpenDoc White Paper � http���www�cilab�org�aboutod�html�

��� The Oberon�F User�s Guide� http���www�oberon�ch�customers�omi�
Oberon microsystems� Inc�� Basel� Switzerland� ����

��� C�Szyperski� Independently Extensible Systems � Software Engineering Po�
tential and Challenges� Proceedings of the �th Australasian Computer
Science Conference� Melbourne� Australia� January � 	 February �� ����

�


